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EFFICIENT COMPUTATION AND LONG RANGE OPTIMIZATION APPLICATIONS

USING A TWO-CHARACTERISTIC MARKOV-TYPE

MANPOWER FLOW MODEL

by

Kneale T. Marshall
Naval Postgraduate School

Monterey, CA 93940

ABSTRACT

In 1] the author has compared and contrasted Markov and

longitudinal manpower flow models. The Markov model requires

relatively little data and has been widely analyzed (see [21 and

[3]). The longitudinal model incorporates more realistic

personnel flows , but requires extensive data which is not always

available. In [41 Hayne and Marshall analyze a two—characteristi-

Narkov model which can be viewed as a hybrid of the Markov and

longitudinal models. The purpose of this paper is to show how

efficient computational methods can be used with the two-

characteristic model by exploiting the special structure of its

underlying matrix. These methods make possible the efficient use

of this basic flow model in optimization models similar to those

described in Chapter 5 of [3].
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1. Introduction

In a previous paper [11 the author has compared and

contrasted cross-sectional and longitudinal manpower flow models.

The cross-sectional , or Markov , model requires relatively little

data and has been widely analyzed (see, for example , [2] and [3]).

The longitudinal model incorporates more realistic personnel

flows, but requires extensive data which is not always available .

In [41 Hayne and Marshall analyze a two—characteristic cross-

sectional model which can be viewed as a hybrid of the Markov

and longitudinal models. In Chapter 5 of [3] Grinold and the

author present some long—range optimization models based primarily

on the longitudinal model.

The purpose of this paper is to show how efficient

computational methods can be used with the two—characteristic

model by exploiting the special structure of its underlying

matrix. These methods make possible the efficient use of this

basic flow model in optimization models similar to those described

in [3]. This paper explores this application in detail when the

two characteristics of the state are grade and time-in-grade .

Approximate solutions are found to infinite horizon linear

programs using methods similar to those in [3].

This paper relies heavily on the notation

and results in [3] and [4]. The reader is referred there

for details. Section 2 contains a formulation of the

o p t i m i z a t i o n  :i ciei and Lt s  approximation (see [31, Chapter 5

,1



pages 186-209). Section 3 contains results on the structure

of the flow matrices , their generating function for the

(Grade, Time in Grade) model , and the legacies and their generating

function. Section 4 describes efficient methods of computation

for these generating functions. Section 5 gives a simple numeric

example which the reader may wish to follow simultaneously with

the theory in Sections 3 and 4. The example has been kept small

and simple because of space limitations and for ease of exposition .

2. Model Formulation

It is assumed that manpower joins a system on one of

K chains , and at some discrete time t is counted in one of

n classes if it is still in the system. Let P(u) be an

n x K matrix with element p .. (u) equal to the fraction of

manpower that enters on chain j which is in class i, u periods

after entering the system. The matrices P(0), P(l),

describe the flow through the system .

Let g(u) be a K-element column vector of flows

into the system on each chain at time u = 1,2,...; let ~.(u)

be an n—element column vector of legacies in each class at time

u = 1,2,... of manpower which enter up to and including time

t = 0, which is taken to be the current time. If s(t) is an

n-element vector of stocks in each class at time t = 1,2 ,...,

then

I - - . - -~~~~~- - -. -. ~~~~~~- —----- — - 
~~~~~~~~

-- 
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t
(l’~ s(t) = ~ P (t—u) g(u) + 2..(t)

u=l

In [3] Grinold and Marshall used this chain-flow model

as the basis of a linear optimization model (see Chapter 5).

Let ~ be a discount factor , a an n-element vector of one-

period costs on stocks, b a K-element of one—period costs on

new hires , p the constant size of the system , A a constraint

matrix on stocks and B a constraint matrix on flows. Finally

let e be a vector with all elements equal to 1.

Consider the infinite horizon linear program (LP)

P1. 

Minimize 
t=l 

~
t[as(t) + bg(t)]

Subject to: es(t) = p

As (t) > 0
— 

t = l ,2,...
Bg(t) > 0

g(t) > 0

It is shown in [3] that the solution to a K-variable

single period problem can be used to generate solutions to P1

which are usually optimal and always good approximations. Let

p (~~) ~ .~
up (u) Q (~~~) = ~ ~~U 

~(u) and c aP(a) + b.
u 0 u=l

Then by using (1) to eliminate s(t), and multiplying the t-th

period constraints in P1 by and summing , we obtain 

~~~~~~~~~~~~~~



P2. Minimize cg

Subject to: eP(c~)g = [c~p/ (l—c~)] - e2~(cz )

AP(cz)g > -M (e~)

B g > 0

This LP has only K variables g. Let g* be the optimal

solution to P2. In [3] , Chapter 5, it is shown how scalars

y(1), y(2),... can easily be found successively such that, if

we let g*(t) = y (t)g*, then these g*(t) are often optimal

in P1 (they are optimal if A is vacuous).

The purpose of this paper is to analyze the structure

of P(a) and £ (a) in P2 when

(i) The system can be partitioned into a hierarchical

structure of grades

(ii) A two—characteristic cross-sectional flow model is used

with a. state described by the 2-tuple (Grade, Time in Grade).

This is called the (G, TIG)-model.

(iii) Entering a chain corresponds to entering a grade , necessarily

with TIG equal to 1.

(iv) A class corresponds to a grade .

We use the results of Hayne and Marshall in [4] for the (G,TIG)

model. For example , in a simple model of a university faculty

4 
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the grades might be Assistant Professor , Associate Professor and

Full Professor . Let us assume that the maximum number of periods

(years) a person can spend in these grades is 6, 30, and 30.

The number of states in the (G,TIG) model is 66, so that a cross-

sectional flow matrix , say Q, (66 x 66) would have 4356 elements ,

most of which would have value zero. One of the matrices P(u )

in (1) would be 3 x 3 with only 9 elements, since chains

map onto grades with TIG equal to 1 and stocks are also measured

only in grades. Any given manpower policy will imply certain

element values for Q. In this paper we show how to find P(u)

and £ . (u) , and hence P ( c ~) and 2 ( c t ) ,  from Q in an efficient

manner . Thus policy changes can be reflected in the chain flow

model through Q, where the effects of such changes on P(u)

could not be determined directly . A simple numerical example

is given in Section 5 following the theory . The reader may

wish to follow the example concurrently with the theory.

3. The Structure of 9..(a) and P(ct)

The number of grades in the system is n (= K ) .  Let

the maximum time in grade j be u ( j ) ,  and let ~ = 

~~~~ 
u(j).

Then ~ is the number of states in the system. Let Q be the

one-period flow matrix for the (G,TIG) model. The u-period flows

are given by Q1
~. We now relate the 1 2. matrix Q

U to the

n x n matrix P(u).

5 
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Let r be an n x 9. matrix where row j has

(i) the first u (i) elements equal to 0,

(ii) the next u(j) el.~irents equal to 1,

(iii) the remaining elements equal to 0.

Let ~ be an 9. x n matrix where column j has

(i) the (u (j—l)+l)-th element equal to 1 (element 1 when

j = 1)

(ii) all other elements equal to zero.

Then

(2) P(u) ~~~~ , u = 0,1,2 

Recall that P ( ct ) = ç~U P(u). Using (2), if we let

(3) N ( c~) = ( I  - eQ) 1

then

( 4 )  P ( c * )  = F N ( a ) c ~ .

Recall also that  9 ( e )  = 
U Q ( u ) .

Let o be the I- -vector of stocks of manpower in each

state at time t = 0.  Then

Q ( u )  = FQ U O , u = 1 , 2 , . . .

and therefore ,

( 5 )  c .(r ~) = e r ( N ( c t )  — I)c~

6



Notice from (4) and (5) that to determine P(a) and £(a)

we need to compute the n x 9. matrix FN(c&). But first we look

at the structure of N(a), the inverse of the large sparse

matrix (I — ciQ) .

In [4] Hayne and Marshall show that for the (G,TIG) model

the cross—sectional flow matrix Q has the structure

‘~1 ~2
( 6 )  Q =

Pn-i

where Q is a u(j) X u(j) matrix and P. is a u(j+l)A u(j)
J 3

matrix. All other submatrices of Q have 0’s as elements and

are suppressed. In addition each Q~ contains zeros except

for the lower diagonal,

0 0

0

(7)Q— 0 q
~2 .

0 0 ~~~~~~~ 
0

= 1,2,..., n .

7
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L Also each P. contains zeros except for the top row,

~ j l  P~~2 ~ j , u ( j )

(8) P. = [ ] , j =
The inverse of (I - aQ) can be written

N21(a)

(9) N (cz ) =

Nn n _ l (ct ) N~~ (a)

where

= (I - e Q . ) 1

and

N . .  = e3 1 N . . ( e ) ( P .  N .  . (e)) (P.N. . (e))JI. J J  j — l  j — l , j — l  1 11

for j > i. Thus N ( e )  is completely determined by the inverses

{N..(c ), j = 1,2. ...,n}.

Now let

8
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(10) 
~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

for k > i,

the product of (k—i) nonzero elements of Q~ . Then

1

1

a2n31(j )  an32
(~ ) 1

(11) N ..(cz) =

en- nU (~ ) 1
(j )  anU(J) ,u(j-1) 

(j )

i = 1 ,2,..., n

Thus all the elements of N~ 1
(cL ) are determined from the partial

products in (10), and all the elements of N(ct) in (9) are

determined by multiplication of these with the vectors forming

the top rows of the P. in (8). However , the matrix N(e) in

(9) need never be explicitly determined in order to find P(’~)

and 2 (a). We make the following observations.

(i) P~N~ 1
(z) is a matrix with nonzero elements only

in the top row (i.e., it has the same structure

as (R)).

(12) 
(ii) If IT is any matrix with the same structure as

(8) with as many rows as N. .(cL) has columns,

then N..( ci )ll requires only the first column of

T i

9
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Now let

r = Max~u(j), j = 1,2,..., n}

and let W(e) be an n x r matrix with the j-th row equal to

the nonzero elements of Q~ multiplied by ci, preceded by a 1 ,

and 0’s added to the right as necessary . Thus

1 ctq11eq 12 
.. . cLq

1~~~(1)_1 
0 .. 0

1 ctq21eq22 cL~~2 ,~~(2)_ 1 I o l ... . 0

(13)W(ct)=

- 

1 eq~1a~~ 2 ~n ,u(n)-1 ]
where it has been assumed that u(1) < u(2) < u(n) = r for

clarity . Similarly, let V(ct) be an n x r matrix wit~ th..

j-th row equal to the nonzero elements of P. multiplied by ~~,

with U ’ s added to the right as necessary , for j < n— l , and

row n a row of U’ s. Thus

•I ctPlU (l) • 1  0  

~ 
(1P2 u (2) PO 0

(14) V ( c t )  = 

, ~!- -- ,~ ( ; i )

- 
0 , Ii

10
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Finally let S be an n x r matrix of stocks at time zero, where

element s1~ gives the stocks in grade i with time in grade

equal to j. Thus S is a matrix representation of the vector a

with 0’s added where necessary. Let T(j) = 

~~~~ 
u(i). Then

a2 °T(l) 0 0

(15) S = aT(l)+l °T(l)+2 °T(2) 0 . . .0

aT( l)+l aT(n_l)+2 cT()

All the information required to determine 9(a) and P(a) is

contained in W(ct), V(ci), and S. E~oth can be found usinq simple

row operations on these compact matrices. In the 3 grade , 66

state example given earlier V , W and S are each 3 x 30 and

contain a total of 270 elements. Storage of the Q matrix to

find (I - eQ) 1 directly would require 4356 elements , and direct

inversion would necessitate inverting a 66 dimensional very

sparse matrix. Total storage for both Q and a would be

4422 elements.

4. Computation of ~~cz) and P(n).

Let v and w be any two n-vectors . We define a

vector—valued function F(v ,w) on these such that

(16) F(v ,w) = f (v 1 + w2v2
+...+ w2w3

..•wv),(v
2
+w

3v3
+...+w

3w4
...wv ),

(v + w v ) , v Jn-i n t ~ n

11
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We can extend this function as follows. If V and W

are matrices of the same size, then F(V,W) is a matrix X with

the same dimensions as V and N, and if v and w are the

j—th rows of V and W , respectively , then (16) gives the j-th

row of X. The function F is the key to the efficient calcula-

tion of both 9(e) and P(a), since by using it we can

efficiently compute FN(e).

Let U be an n x r matrix such that element (i ,j )  is

1 if element (i , j )  of W (e) is positive , and is 0 otherwise ,

where W(cz) is given by (13). Also let

v .  = e N . . ( a )  , j = l,2,...,n ,

the column sums of N~~~(ct) in (11). Thus v~ is a u(j)—vector .

Now let 
~~~

. be v . followed by r-u(j) zero ’s. Then

V
1

(17) F(U,W(a)) = v 2

n

an n ~ r matrix.

Now let m. be the top row of the matrix P~N .~~(-~)~

j = 1,2,... , n-i , a u(j)-vector , and let rn. be m . followed

by r-u(j) zero ’s. Then

12
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m1

1122
(18) F(V(a),W (cl))

mn- 1

an n x r matrix. Equations (17) and (18) contain all the required

data for I’N(a). Let v1 be the first element of any vector v.

Then using the results in (11) and (12),

V
1

V~ m~ V 2

(19) rN(e) = V~m~m1 V~~m~ V
3

V

~

an n x 9. matrix.

Consider now the determination of P(a) = FN(a)~ . From

(19) and the definition of ~ we see that

~

- .- -

~

.-
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1 1  1
V

2
m

1 
V

2

(20)  P ( c z ) = v~m~m~ V~m2~ v~

11  11
V m  “•ITt m Vn n-l 2 1  n

an n x n matrix. This can be constructed from the first columns

of (17) and (18).

To determine Q (ci ) we require FN(ci) and a. From

(19) it is easy to see that it can be constructed from (17), (18),

and (15).

We now illustrate efficient iPL functions to compute the

various matrices. The reader should consult [5] for details

of APE programming.

Let ‘ .~i and “~2 be any two matrices of the same dimension .

Then the APE function

(21) ~ R~-’:1 F ~J2;X

LI]  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V

calculates F(~ l ,’1i) as defined by (16’ . Let V , W and S b~

APE variables for the matrices V (c~) ,  W ( a )  and S in (14), (13),

and (15) respectively . Then (17) is given by ( W  > 0 )  P 1~, and

(18) by V F W. If we let these be X and Y respectively,

14 
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and let N be the number of grades and P be P(cz), then

(22) P4- ( ( ~N ) o .�~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ;1]

Finally, if ~ is the AP L variable for a, and L the variable

for 9(e), then from (5), and the arguments above

( 2 3 )  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5. Numerical Example

Assume we have 3 grades and that the maximum time in

each grade is 3, 4 and 5 periods. Thus n = 3, u(l) = 3, u(2) = 4 ,

u(3) = 5, r = 5. The matrix 0 in (6) is 12 x 12 and contains

the following 5 non-zero submatrices (see (7) and (8))

0 0 0 .05 .1 .8

0 = .9 0 0  P — 

0 0 0

0 0 0
0 . 8 0 0 0 0

0 0 0 0 0 0 .1 .7

.95 0 0 0 0 0 0 0

0 . 9 0  0 p
2 

0 0 0 0

o o .85 0 0 0 0 0

0 0 0

~~0 0 0 0 0

.9 0 0 0 0

= 0 . 9 0 0 0

0 0 .8 0 0

• 0 0 0 .70

15
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The starting stocks are given in the 12—vector

a = (100, 73, 70, 82, 65, 63 , 58, 59 , 48, 30, 25, 20)

Let a = 0.9. Then from (13). (14) and (15) we have the 3 x 5

matrices

Il  .81 .72 0 0

I 1 .855 .81 .765 0W (a)
L 1 .81 .81 .72 .63

r .045 .09 .72 0 0

V(ci) = 0 0 .09 .63 0

L a  0 0 0 0

1 100 73 70 0 01s = L : ~From (17) and (18), by using (21) we obtain

2.393 1.72 1 0 0

F(U ,W ( - ~~) )  = 3. 077 2.429 1.765 1 0

L 3.236 2.761 2.174 1.63

and
.538 .608 .72 0 0

F ( V ( a )  ,W ( c t ) ) = .398 .463 .472 .63 0

L o 0 0 0 0

Then using (22) and (23)

2.393 0 0

P(ri ) = 1.655 3.°77 0

L 0.689 1.282 3.236

and

= (172.7 691.9 805.8)

1t~

-.---

~
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Once P(e) and 9(a) have been determined they can be

used in the optimization problem P2 to find optimum input flows

each period . Suppose we wish to measure the effect of a change

of policy . Let us assume for example that we want to test the
‘p

effect of limiting the maximum time in grade 2 to 3 periods ,

and of extending the maximum time in grade 3 to 6 periods. Then

W(a), V(a), and S each become 3 x 6 matrices. But (21) can be

used with any sized matrices and so (22) and (23) readily give the

new values of P(a) and 9(e) for use in resolving P2. The

computational speeds involved in these calculations , including

*solving P2 and determining g (t) = y(t)g, are of the order 1 or

2 seconds for systems with about 10 grades and a maximum time

in grade of about 30 periods. Thus interactive computer models

can be designed so that the manpower planner can sit at a terminal

and test alternate policies or design manpower systems .

17 
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